30 research outputs found

    Analysis of Generative Chemistries

    Get PDF
    For the modelling of chemistry we use undirected, labelled graphs as explicit models of molecules and graph transformation rules for modelling generalised chemical reactions. This is used to define artificial chemistries on the level of individual bonds and atoms, where formal graph grammars implicitly represent large spaces of chemical compounds. We use a graph rewriting formalism, rooted in category theory, called the Double Pushout approach, which directly expresses the transition state of chemical reactions. Using concurrency theory for transformation rules, we define algorithms for the composition of rewrite rules in a chemically intuitive manner that enable automatic abstraction of the level of detail in chemical pathways. Based on this rule composition we define an algorithmic framework for generation of vast reaction networks for specific spaces of a given chemistry, while still maintaining the level of detail of the model down to the atomic level. The framework also allows for computation with graphs and graph grammars, which is utilised to model non-trivial chemical systems. The graph generation relies on graph isomorphism testing, and we review the general individualisation-refinement paradigm used in the state-of-the-art algorithms for graph canonicalisation, isomorphism testing, and automorphism discovery. We present a model for chemical pathways based on a generalisation of network flows from ordinary directed graphs to directed hypergraphs. The model allows for reasoning about the flow of individual molecules in general pathways, and the introduction of chemically motivated routing constraints. It further provides the foundation for defining specialised pathway motifs, which is illustrated by defining necessary topological constraints for both catalytic and autocatalytic pathways. We also prove that central types of pathway questions are NP-complete, even for restricted classes of reaction networks. The complete pathway model, including constraints for catalytic and autocatalytic pathways, is implemented using integer linear programming. This implementation is used in a tree search method to enumerate both optimal and near-optimal pathway solutions. The formal methods are applied to multiple chemical systems: the enzyme catalysed beta-lactamase reaction, variations of the glycolysis pathway, and the formose process. In each of these systems we use rule composition to abstract pathways and calculate traces for isotope labelled carbon atoms. The pathway model is used to automatically enumerate alternative non-oxidative glycolysis pathways, and enumerate thousands of candidates for autocatalytic pathways in the formose process

    Reconciling Inconsistent Molecular Structures from Biochemical Databases

    Full text link
    Information on the structure of molecules, retrieved via biochemical databases, plays a pivotal role in various disciplines, such as metabolomics, systems biology, and drug discovery. However, no such database can be complete, and the chemical structure for a given compound is not necessarily consistent between databases. This paper presents StructRecon, a novel tool for resolving unique and correct molecular structures from database identifiers. StructRecon traverses the cross-links between database entries in different databases to construct what we call an identifier graph, which offers a more complete view of the total information available on a particular compound across all the databases. In order to reconcile discrepancies between databases, we first present an extensible model for chemical structure which supports multiple independent levels of detail, allowing standardisation of the structure to be applied iteratively. In some cases, our standardisation approach results in multiple structures for a given compound, in which case a random walk-based algorithm is used to select the most likely structure among incompatible alternates. We applied StructRecon to the EColiCore2 model, resolving a unique chemical structure for 85.11 % of identifiers. StructRecon is open-source and modular, which enables the potential support for more databases in the future.Comment: 14 pages, 4 figures, accepted at ISBRA 202

    A proposal for a study on treatment selection and lifestyle recommendations in chronic inflammatory diseases:A danish multidisciplinary collaboration on prognostic factors and personalised medicine

    Get PDF
    Chronic inflammatory diseases (CIDs), including Crohn’s disease and ulcerative colitis (inflammatory bowel diseases, IBD), rheumatoid arthritis, psoriasis, psoriatic arthritis, spondyloarthritides, hidradenitis suppurativa, and immune-mediated uveitis, are treated with biologics targeting the pro-inflammatory molecule tumour necrosis factor-α (TNF) (i.e., TNF inhibitors). Approximately one-third of the patients do not respond to the treatment. Genetics and lifestyle may affect the treatment results. The aims of this multidisciplinary collaboration are to identify (1) molecular signatures of prognostic value to help tailor treatment decisions to an individual likely to initiate TNF inhibitor therapy, followed by (2) lifestyle factors that support achievement of optimised treatment outcome. This report describes the establishment of a cohort that aims to obtain this information. Clinical data including lifestyle and treatment response and biological specimens (blood, faeces, urine, and, in IBD patients, intestinal biopsies) are sampled prior to and while on TNF inhibitor therapy. Both hypothesis-driven and data-driven analyses will be performed according to pre-specified protocols including pathway analyses resulting from candidate gene expression analyses and global approaches (e.g., metabolomics, metagenomics, proteomics). The final purpose is to improve the lives of patients suffering from CIDs, by providing tools facilitating treatment selection and dietary recommendations likely to improve the clinical outcome

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    <i>In silico</i> Support for Eschenmoser’s Glyoxylate Scenario

    No full text
    A core topic of research in prebiotic chemistry is the search for plausible synthetic routes that connect the building blocks of modern life, such as sugars, nucleotides, amino acids, and lipids to "molecular food sources" that were likely to have been abundant on early Earth. In a recent contribution, Albert Eschenmoser emphasised the importance of catalytic and autocatalytic cycles in establishing such abiotic synthesis pathways. The accumulation of intermediate products furthermore provides additional catalysts that allow pathways to change over time. We show here that generative models of chemical spaces based on graph grammars make it possible to study such phenomena in a systematic manner. In addition to reproducing the key steps of Eschenmoser's hypothesis paper, we discovered previously unexplored potentially autocatalytic pathways from HCN to glyoxylate. A cascade of autocatalytic cycles could efficiently re-route matter, distributed over the combinatorial complex network of HCN hydrolysation chemistry, towards a potential primordial metabolism. The generative approach also has it intrinsic limitations: the unsupervised expansion of the chemical space remains infeasible due to the exponential growth of possible molecules and reactions between them. Here, in particular, the combinatorial complexity of the HCN polymerisation and hydrolysation networks forms the computational bottleneck. As a consequence, guidance of the computational exploration by chemical experience is indispensable
    corecore